Spinal Axon Regeneration Induced by Elevation of Cyclic AMP

نویسندگان

  • Jin Qiu
  • Dongming Cai
  • Haining Dai
  • Marietta McAtee
  • Paul N. Hoffman
  • Barbara S. Bregman
  • Marie T. Filbin
چکیده

Myelin inhibitors, including MAG, are major impediments to CNS regeneration. However, CNS axons of DRGs regenerate if the peripheral branch of these neurons is lesioned first. We show that 1 day post-peripheral-lesion, DRG-cAMP levels triple and MAG/myelin no longer inhibit growth, an effect that is PKA dependent. By 1 week post-lesion, DRG-cAMP returns to control, but growth on MAG/myelin improves and is now PKA independent. Inhibiting PKA in vivo blocks the post-lesion growth on MAG/myelin at 1 day and attenuates it at 1 week. Alone, injection of db-cAMP into the DRG mimics completely a conditioning lesion as DRGs grow on MAG/myelin, initially, in a PKA-dependent manner that becomes PKA independent. Importantly, DRG injection of db-cAMP results in extensive regeneration of dorsal column axons lesioned 1 week later. These results may be relevant to developing therapies for spinal cord injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regeneration of Sensory Axons within the Injured Spinal Cord Induced by Intraganglionic cAMP Elevation

The peripheral branch of primary sensory neurons regenerates after injury, but there is no regeneration when their central branch is severed by spinal cord injury. Here we show that microinjection of a membrane-permeable analog of cAMP in lumbar dorsal root ganglia markedly increases the regeneration of injured central sensory branches. The injured axons regrow into the spinal cord lesion, ofte...

متن کامل

Activated CREB Is Sufficient to Overcome Inhibitors in Myelin and Promote Spinal Axon Regeneration In Vivo

Inhibitors in myelin play a major role in preventing spontaneous axonal regeneration after CNS injury. Elevation of cAMP overcomes this inhibition, in a transcription-dependent manner, through the upregulation of Arginase I (Arg I) and increased synthesis of polyamines. Here, we show that the cAMP effect requires activation of the transcription factor cAMP response element binding protein (CREB...

متن کامل

Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo

Lesion-induced scarring is a major impediment for regeneration of injured axons in the central nervous system (CNS). The collagen-rich glial-fibrous scar contains numerous axon growth inhibitory factors forming a regeneration-barrier for axons. We demonstrated previously that the combination of the iron chelator 2,2'-bipyridine-5,5'-decarboxylic acid (BPY-DCA) and 8-Br-cyclic AMP (cAMP) inhibit...

متن کامل

Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans

The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7...

متن کامل

Soluble Adenylyl Cyclase (sAC) Rescues Neurons from Inhibitory Myelin Cues

Myelin associated proteins are known to pose hurdles to central nervous system (CNS) axon regeneration. The myelin mediated inhibition on axon regeneration can be reversed by brain derived neurotrophic factor (BDNF). BDNF enhances cyclic AMP (cAMP) levels for eliciting its beneficial effects on axon regeneration. A recent article by Martinez et al., revealed that soluble adenylyl cyclase (sAC) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2002